PHYSICAL REVIEW E 79, 046108 (2009)

Effects of noise and confidence thresholds in nominal and metric Axelrod dynamics
of social influence

Luca De Sanctis™
Centro di Ricerca Matematica Ennio De Giorgi, Scuola Normale Superiore, Piazza dei Cavalieri 3, 56100 Pisa, Italy
and The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34014 Trieste, Italy

Tobias Galla"
Theoretical Physics, School of Physics and Astronomy, The University of Manchester, Manchester M139PL, United Kingdom
and The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34014 Trieste, Italy
(Received 17 August 2007; revised manuscript received 14 January 2009; published 21 April 2009)

We study the effects of bounded confidence thresholds and of interaction and external noise on Axelrod’s
model of social influence. Our study is based on a combination of numerical simulations and an integration of
the mean-field master equation describing the system in the thermodynamic limit. We find that interaction
thresholds affect the system only quantitatively, but that they do not alter the basic phase structure. The known
crossover between an ordered and a disordered state in finite systems subject to external noise persists in
models with general confidence threshold. Interaction noise here facilitates the dynamics and reduces relax-
ation times. We also study Axelrod systems with metric features and point out similarities and differences

compared to models with nominal features.
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I. INTRODUCTION

Given the increasing influence of mass media, globaliza-
tion, electronic communication, and intercontinental travel,
the apparent persistence of cultural diversity seems surpris-
ing. To study this problem Axelrod [1] proposed a simple
agent-based model to study how cultural features dissemi-
nate. In particular, the model addresses the question of how
cultural diversity can result from locally attractive interac-
tion. Axelrod’s model is—in the language of physics and
dynamical systems theory—a cellular automaton with a set
of discrete degrees of freedom placed on a discrete spatial
lattice, updated in time through specific interaction rules, and
is easily simulated computationally. The simulation and the-
oretical analysis of social and economic systems have in the
recent years been taken up by the statistical physics commu-
nity (see, e.g., [2-6] and references therein). Social systems
are here interpreted as many-particle problems and tools
originally developed to study physical systems have been
transferred and adapted to the study of socio-economic mod-
els in different contexts. See also [7] for a sociological per-
spective of agent-based modeling.

One of the first systematic studies of the Axelrod model is
the one of [8], where a phase transition between a monocul-
tural state (referred to as globalization) and a multicultural
phase (referred to as polarization) has been identified as a
function of the degree of variation of the initial conditions
chosen before running the Axelrod automaton. In terms of
physics this transition is one between ordered and disordered
states. Axelrod’s two-body interaction is attractive as such
and drives the system to order. Two particles can only inter-
act, however, if their states are not fully distinct from each
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other. These interaction barriers lead to potential jamming.
The model thus exhibits some similarity with kinetically
constrained models of glass-forming materials [9,10]. If the
disorder of the initial conditions is higher than some critical
value, the kinetic arrest occurs after a finite number of time
steps, and the system remains jammed in a disordered state.
For low enough disorder in the random initial conditions,
however, the ordering dynamics continues indefinitely in in-
finite systems. In finite systems full convergence is reached
at finite times, and the dynamics comes to a halt when any
remaining disorder has been eliminated, resulting in a fully
monocultural “globalized” state.

A variety of extensions and variations of Axelrod’s origi-
nal model have been proposed. Klemm et al. [11,12], for
example, studied the effects of noise on the jamming behav-
ior of Axelrod systems; moreover, the effects of mass media
influence have recently been addressed in [13,14]. The
model, originally defined on a square lattice, has furthermore
been simulated on a variety of complex networks in order to
study the effects of the topology of the underlying web of
interactions on the dynamics and convergence properties
[15].

One of the obvious shortcomings of Axelrod’s original
model and the subsequent variations is the fact that a metric
structure is missing in opinion space. Opinion o;, of agent i
on feature f takes values in a discrete set, usually labeled by
{l,...,q}, and agents are classified only as to whether they
have the same opinion on a certain issue (o;=0;), or
whether their opinions are different (o, # o). No notion of
partial agreement on a feature is present. Agents can either
fully agree on a certain issue f or they disagree (a more
formal definition of the model will follow below). This as-
sumption has been relaxed in a sociological context, for ex-
ample, in [16-18], and the notion of metric spaces has been
introduced. For such features a gradual distinction of a de-
gree of agreement can be defined, for example, given by
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|a'if— oj", where the integer m is referred to as “modera-
tion” [16]. A study of a multidimensional opinion model with
continuous states has been presented in [19].

As a second drawback, no notion of different tolerance
levels or inclination to change one’s opinion is present in the
original setup. Interaction between agents in Axelrod’s origi-
nal model can occur once they agree on at least one out of
the total number F of features. The mentioned quantities F
and ¢ are the main model parameters in Axelrod’s original
setup. From a sociological point of view it is interesting to
study the model in more generality and to introduce a “con-
fidence threshold” % €{0, ..., F}, so that agents have the po-
tential to interact only if they agree on (strictly) more than ¥
out of F issues. This is referred to as “bounded confidence”
in the sociological literature. Axelrod’s original model corre-
sponds to minimal confidence threshold (99=0), in which in-
teraction is possible rather easily. Large values of the thresh-
old ¥ systematically suppress the potential to interact,
corresponding to more and more conservative agents, who
do not change opinion easily.

Studies of different models addressing either of these two
points e.g., through the introduction of continuous opinion
states can be found in [19-26]. A first analysis of the effects
of metric features and confidence thresholds in the context of
the Axelrod model has been conducted in [17,18]. These
studies focus mostly on numerical simulations and are
mostly restricted to specific choices of the model parameters
F and g. The aim of the current work is to complement and
extend the analysis of [17,18] through a more general study
of the model in parameter space. We also provide analytical
results based on a master equation approach [8] for the Ax-
elrod model with nominal features and general confidence
threshold.

II. MODEL

The system is composed of N=L X L agents fixed on the
nodes of square lattice of lateral extension L. For simplicity
we consider periodic boundary conditions in both spatial di-
mensions. The state of agent i e {1,...,N} is characterized
by an opinion vector ¢;=(0;, ..., 0;r), where the integer F
>1 denotes the number of cultural “features” in the model.
Each component o, then indicates the opinion of agent i on
issue f. In Axelrod’s original formulation each component
;s takes one of the ¢ values {I,...,q} at each time step, so
that each spin &; describes one of ¢” cultures. Initially each
;s is drawn at random from the set {1, ...,g} with no corre-
lations between agents or features. The model parameter g
hence measures the degree of disorder in the random initial
spin configuration.

We will in the following distinguish between “nominal”
and “metric” features as suggested in [17,18]. We first de-
scribe the dynamics of the nominal Axelrod model. Here, the
system evolves in time by iteration of the following steps:

(i) Select one spin i € {1,...,N} at random. Subsequently
select one of its four nearest neighbors at random. Call this
second spin j.

(ii) Compute the overlap w(i,j):EJf:l 50’_]“07 e{0,....F}
between spins i and j (with &, ,+ the Kronecker delta).
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(iii) If w(i,j)=F continue with (v) (spins ¢; and g; are in
identical states).

(iv) Set the probability for i and j to interact to /=46 if
w(i,j))=0and to I=w(i,j)/F if w(i,j)> . Then with prob-
ability 1—1 leave spins i and j unchanged. With probability /
spins i and j perform the following interaction: choose one
feature f at random such that o;,# 0. Such a feature exists
as w(i,j) <F. Then set o;=0.

(v) External noise. With probability r perform the follow-
ing: choose one spin i and one feature f at random. Set o to
a value chosen randomly from {1, ...,q}.

(vi) Resume at (i).

We will refer to one cycle (i)—(vi) as a microscopic time
step in the following. At system size N the duration of such a
step is taken to be Ar=1/N. In general we will present the
time evolution of the system mostly in terms of macroscopic
time units ¢, so that one unit of time ¢ corresponds to N
microscopic interaction cycles, i.e., on average to one (at-
tempted) update per spin.

In the above dynamics, ¥ is the interaction threshold
mentioned above. In the absence of interaction noise (6=0)
neighboring agents have the potential to interact if and only
if they share opinions on (strictly) more than ¥ out of F
features. To soften this constraint we follow [17] and intro-
duce a source of noise, allowing agents who agree on ¥ or
fewer features to interact with probability 6. We refer to this
type of stochasticity as “interaction noise” in the following; &
measures its strength. r in the above update rules instead
denotes the strength of what we will call “external noise.”
After each time step, with probability r a randomly chosen
component of a randomly chosen spin is set to a random
value {1,...,q}. This type of noise has first been studied in

[11].

II1. MASTER EQUATION IN THE MEAN-FIELD
APPROXIMATION

In this section we will consider a mean-field approxima-
tion of the model. In our mean-field model it is possible and
convenient to consider the dynamics in terms of bonds, i.e.,
of pairs of neighboring agents, rather than in terms of spins
{@;}. Following the strategy of [8,27,28], let P,(z) be the
probability that, at a given time ¢, a bond is of type m, i.e.,
that the two agents at the ends of the bond have the same
opinion on exactly m features. We will occasionally refer to
bonds of type F' as “fully saturated” in the following. If we
let p be the probability that at the starting point t=0 of the
dynamics two spins share a given feature, we have

Po0) = (Z )pmu o), (1)

For o;; drawn independently and with equal probabilities
from {1,...,q} one has p=1/q.

We further define A to be the probability that two inde-
pendent spin components are equal to one another, but dif-
ferent from a given third. The probability A is in principle a
time-dependent quantity as the system evolves according the
Axelrod dynamics. We here neglect this time dependence
and assume that \ is well approximated by its initial value
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FIG. 1. (Color online) Relative size S/N of the largest cultural region in the standard Axelrod model with F nominal features; initial
conditions are drawn from oy e{l,...,q} with flat distribution. Symbols show data from simulation run until convergence, system size
N=400, averaged over ten samples, and F=5,10,20. The vertical dashed lines mark the location of the phase transition as predicted by a
numerical integration of the master equation. The right panel shows P from simulations (symbols) compared to results predicted by the

master equation (solid lines).

A=(g—-1)"! throughout the dynamics. This was seen not to
have any significant effects on results in [8,27]. Now denote
by szkzn the transition probability that a bond of type n be-
comes of type m due to the updating of a neighboring bond
of type k. The only nonzero elements are [8,27,28]

b =n/F s

nn—1—
W = (1 =N (1 -nF),

W =N\ -n/F),

nn+l —

independent of k. We will therefore suppress the superscript
k in the following.

Let us further define I, to be the probability with which
two agents who share opinions on k features interact if se-
lected for potential update. One has

5 k=09,
I,=\kIF, 9+1=k<F,
0, k=F.

The master equation can then be written in the form

Fo1
dpP, (t
8 dPul) => [Bnser1 = Oyl P+ (g = 1)

2 dt =0
F-1 F
X(E IkPk>E (Pan,m_ Pme,n)
k=0 n=0
m+ 1 1
+rg (1_6mF)Pm+1_ l--
3 F q
m 1
—(1=8, )P, =~
( m,F) qu
-1\1
+(1_5m())Pm—l<l_m_)_
8 F q
m 1
-(1=6,0P,=|1-—1]. 2
( m,O) mF< q>:| ()

This equation is an approximation in the mean-field sense,
and the thermodynamic limit is implied. The master equation
can be expected to describe the system at most at large sys-
tem sizes and will therefore not be able to capture features
that are characteristic of finite systems. The geometry of the
square lattice is mimicked, in the mean-field spirit, by the
prefactors g—1 and g in the different terms of the master
equation. g here denotes the coordination number of each
spin, so that these coefficients reflect the number of spins
with whom a given spin can interact (albeit these are not
nearest neighbors any longer). On a square lattice in two
dimensions one has g=4. The prefactor g/2 in front of the
time derivative in Eq. (2) takes into account the fact that the
system contains g/2 bonds per lattice site. One would expect
the master equation to be accurate in the case of degree-
regular graphs (of connectivity g), as discussed for example
in [28]. Still, as demonstrated [8] and as we will see below in
the context of external and interaction noise, an approach
based on numerical integration of the master equation is able
to reproduce some features of the two-dimensional model at
least qualitatively.

IV. AXELROD DYNAMICS WITH NOMINAL FEATURES
A. Base line model

For completeness we reproduce the behavior of the base
line Axelrod model (#=r=6=0) in Fig. 1. For any given
number F>2 of features a discontinuous transition between
an ordered state at ¢ <g.(F) and a disordered phase at larger
values of ¢ is observed. At g <g.(F) the coarsening dynam-
ics of the model persists until a fully ordered state is reached.
For any feature f=1, ..., F all agents then agree on one opin-
ion, i.e., o; =0y for all i and j. In finite systems such a state
is reached after a finite time. Figure 1 depicts the relative size
S/N of the largest culturally homogeneous region of spins as
a function of ¢g. A homogeneous region R is here defined as a
subset of the L X L agents, so that within R all agents agree
on all features [29]. As seen in the figure, one finds only one
region at convergence for ¢ <q.(F) and has S/N=1. At val-
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FIG. 2. (Color online) Fraction of fully saturated bonds Pj in
the Axelrod model with F=10 nominal features and with confi-
dence threshold 9=3,2,1,0 (from left to right); initial conditions
are drawn from ojre{l,...,q} with flat distribution. Connected
markers are from simulations with N=100? agents, run until con-
vergence, and averaged over ten samples. Thick solid lines show
theoretical predictions by the master equation.

ues of ¢ larger than ¢.(F) dynamic arrest occurs before the
system can reach a fully ordered phase. After the arrest no
further ordering is possible due to the kinetic constraints im-
posed on the otherwise attractive spin dynamics. The system
remains in a disordered state, marked by a large number of
small cultural regions and a vanishing number of active
bonds. S/N remains small at convergence in this regime. As
seen in Fig. 1 the fraction P of fully saturated bonds be-
haves similarly to S/N at convergence and can be well cap-
tured by the master equation in the disordered regime. Since
Py offers a measure of order which can, in the disordered
phase, be obtained from the master equation and from simu-
lations allowing for a quantitative comparison, we will
mostly use P rather than S/N in the following as an order
parameter. The ordering at low values of g cannot be ob-
tained from an approach based on the master equation [8].
We also note that the precise form of the curves P versus g
(as shown, e.g., in Figs. 1 and 2) may depend on the specific
details of the model definitions. In [8], for example, spin
states are not strictly limited to the set {1,...,¢} and quali-
tative differences can hence occur. Integrating the master
equation at different choices of F furthermore indicates that
the shape of such curves may depend on the number of fea-
tures (see, e.g., [28] for the case F=2).

B. Effects of interaction threshold

We now turn to the noise-free model with general inter-
action threshold 9. As shown in Fig. 2 the qualitative behav-
ior of the model is not affected much by the introduction of
a confidence threshold. As before, an ordered phase is found
at low values of g and a disordered one at g larger than some
critical value g.(9,F). One finds that an increased confi-
dence threshold suppresses interaction and hence reduces the
range of ¢ in which order can be reached. At fixed F,
q.(9,F) is a decreasing function of 9. Figure 2 also demon-
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FIG. 3. (Color online) Phase diagram of the model with general
confidence threshold in the mean-field approximation. Locations of
the transitions are obtained from the master equation. The curves
show F=40,20,10,5 from top to bottom. The system is in the
disordered phase above the respective lines. Ordered states can be
expected below. The insets show a rescaling in terms of the relative
threshold 9/ F (left) and of the relative number of opinion states per
feature ¢/ F (right).

strates that the master equation given above describes the
qualitative behavior of the system and dependence on the
interaction threshold appropriately. In the disordered phase
even a reasonable quantitative agreement between numerical
measurements of the fraction of fully saturated bonds and the
corresponding theoretical predictions can be observed. We
attribute remaining discrepancies to the mean-field approxi-
mation, inaccuracies in capturing the two-dimensional geom-
etry, and to finite-size effects.

Figure 3 depicts the phase diagram of the model in the
(9,q) plane for different values of F, as obtained from the
master equation [30]. The disordered phase is found at large
values of ¥ and ¢, respectively, while order is reached at low
g and/or 9. It may here be interesting to ask whether the
relevant variable is the absolute interaction threshold ¢
€{0,...,F} or the relative one ¥/F. In [17,18] results are,
for example, reported in terms of relative thresholds. The left
inset of Fig. 3 confirms that the phase boundaries for differ-
ent values of F as shown in the main panel do indeed show
a reasonable collapse if plotted as a function of J/F. At
small values of i systematic deviations are however ob-
served. A different rescaling was suggested in [31], where
results for the one-dimensional Axelrod model were shown
to depend mostly on g/F. As demonstrated in the right inset
of Fig. 3 an equally good collapse is observed in the (9/F,q)
plane, so that we here cannot reach a definitive conclusion as
to whether there are any independent scaling parameters, and
if so which ones they are [32]. Plotting the data in a plane
spanned by ¥ and J¢/F (not shown here) indicates that
Uq/F is roughly constant at the transition point.

Some further indications regarding the relevance of abso-
lute as opposed to relative thresholds can be found in Fig. 4,
where we show the density of fully saturated bonds P as a
function of the density of initially active bonds n,(0)
=1 P(¢=0). Simulations are here performed by fixing &

=0+1
and F and by subsequently varying g. n,(0) then decreases
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FIG. 4. (Color online) P versus fraction of active links 7,(0) in
initial configuration for nominal Axelrod dynamics at different ¢
and F. Data are from simulations (system size N=20X 20, run until
convergence, and averages over ten samples are taken).

with increasing g. The data shown in the figure suggest a
potential collapse on three different curves, one for each of
the tested values 9=0,2,8. While these findings might indi-
cate some potential universality as F and g are varied at fixed
U, reaching a final conclusion as to whether absolute or rela-
tive thresholds are the relevant ones still remains an open
question. It is also interesting to consider the case of large
interaction thresholds, e.g., 9=F-2, and to ask whether an
ordered phase is found in finite systems. While we do not
show results here, simulations at =10, =8 indicate that an
extended ordered phase may here no longer be present. The
case g=1 is trivially ordered, g=2 shows partial order, and
no significant order is found at ¢ >2. It is here important to
notice that caution needs to be taken in the interpretation of
results from the master equation, as the latter only applies to
the mean-field system.

C. Effects of external noise

We now turn to a discussion of the effects of noise on
nominal Axelrod dynamics. We will first focus on external
noise as introduced above. This type of stochasticity de-
scribes random fluctuations which are triggered by an exter-
nal event, and which result in individual spin components
flipped randomly at a given rate. External noise was intro-
duced in the context of the Axelrod model in [11], and the
resulting random mutations describe what Axelrod refers to
as “cultural drift” [1] in the population of agents. Klemm er
al. [11] studied the effects of external noise as a function of
the noise rate and system size for systems in stationary con-
ditions. In finite systems a continuous transition between an
ordered state at low noise rates r and a disordered state at
large r has been identified in [11]. This transition relates to a
characteristic relaxation time T=O(N log N) in finite sys-
tems. When the noise rate is sufficiently large (larger than
T') stochastic perturbations build up in time and lead to a
disordered state. For rT<<1 the system drifts from one or-
dered state to another in time; time averaging effectively
yields global order. Since at g > g, disorder is observed in the
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FIG. 5. (Color online) S/N versus time for F=10,4=100. ¥
=0,1,2 in top, middle, and lower panels. Curves are shown for r
=1072, 1073, and 107* (bottom to top at large times). From simula-
tions, N=10X 10, and averages over ten runs. The x axes show time
in multiples of N microscopic updates, i.e., after ¢ every agent has
on average been selected ¢ times for potential update.

absence of noise (r=0), the behavior of the model in the
limit r— 0% is discontinuous at ¢>¢,.. The finiteness of the
system is crucial here, so that the described behavior cannot
be captured by the master equation.

The effects of external noise on finite Axelrod systems
with general threshold are depicted in Fig. 5. The behavior of
the model with confidence threshold is here found to be very
similar to the one identified in [11] for conventional Axelrod
dynamics. We here focus on F=10,¢g=100 as an example,
but similar behavior can be expected for other model param-
eters in the disordered phase of the noise-free model. For
small values of r the system orders after an initial transient.
At large magnitude of the applied noise, no ordering is
found, consistent with the results of [11]. This general quali-
tative picture appears to be independent of the applied
threshold. The duration of the equilibration period in cases
where the system orders, however, shows a significant de-
pendence on the noise strength and on the chosen threshold.
Generally, the time required to reach equilibration increases
as r is lowered or as ¥ is increased (see Fig. 5). The value of
S/N at equilibrium is a decreasing function of r. In the ex-
amples of Fig. 5 equilibration to a value of S/N=0.1 occurs
fast at r=1072. At lower noise rates, S/N reaches values in
the range of 0.8—1, but only after a substantial equilibration
period, which increases as r is lowered. Only models with
low or moderate threshold and/or sufficiently large noise
strength can hence be found in stationary conditions in rea-
sonable computing time. While analogy suggests that an or-
dered phase sets also at higher thresholds ¥ and small
enough noise strengths if the dynamics is run long enough,
we have not been able to confirm this explicitly due to com-
putational limitations.

In the model at ¥=0, the transition in dependence on r
just discussed disappears in infinite systems [11]. If, at ¢
>q,, the system size is taken to infinity after equilibration,
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FIG. 6. (Color online) Effects of interaction noise. Left: Pr versus r for Axelrod model (F=10,¢=100,9=0), N=20X 20, and run for
20 000 steps (averages over 10-20 samples). The inset shows results for systems of size N=10X 10, 20X 20, 40 X 40, and 60 X 60 at &
=0.1 from right to left. Right: P for different system sizes at fixed 6=0.1 at r=5000. Dashed line in right panel is from numerical integration

of the master equation.

i.e., if systems in a stationary state are considered at increas-
ing N while keeping all other parameters fixed, the popula-
tion always ends up in a disordered state for all »=0, as
demonstrated in [11]. The discontinuity at r— 0% is removed.
While we have not been able to obtain explicit verification of
an analogous behavior in the model with nonzero interaction
thresholds (due to the long involved equilibration times),
simulations in models at nonzero interaction threshold com-
bined with interaction noise (speeding up the dynamics)
show that the transition induced by external noise is indeed a
finite-size effect [see Sec. IV D and especially the inset of
Fig. 6 (left panel)].

D. Effects of interaction noise

We next turn to a discussion of the effects of interaction
noise, as parametrized by its amplitude &. This type of sto-
chasticity facilitates interaction, as it removes kinetic con-
straints and allows agents sharing ¥ or less opinions to in-
teract (at rate &), while in standard Axelrod dynamics they
would not be able to align spin components. While the ex-
ternal noise of amplitude r has an ambiguous role of induc-
ing order at low amplitudes and of driving the system to
disorder at large r, interaction noise can generally be ex-
pected to favor order. It is hence interesting to study the
system in the presence of both types of randomness and to
identify reinforced ordering behavior or (at small r) potential
competition between the ordering and disordering stochas-
ticities (at large r).

Results for a nominal Axelrod system with both types of
noise are reported in Fig. 6. The data indicate that the effects
of interaction noise are mostly to facilitate order for large
ranges of fixed external noise . More specifically, the effects
of interaction noise are to reduce the time scale on which
finite systems order in the presence of external noise. The
left panel of Fig. 6 shows the concentration P of bonds with
full overlap in an Axelrod system run for a time which is not
long enough for the system without interaction noise (circles,
6=0) to develop order at the studied magnitudes r. Order at
r=0.001 would develop only if the system were run for

longer times and had reached a stationary state. The curves
for nonvanishing amplitude & demonstrate the effect of inter-
action noise; the system now orders at small noise strengths
r. While the qualitative behavior of the stationary system is
not altered, the facilitation of the kinetic constraints drasti-
cally reduces equilibration times, and the system orders at
sufficiently low r even after moderate running times. Inter-
estingly, the noise strength r( separating the ordered from the
disordered regime of the stationary system appears not to be
affected much by the interaction noise. The curves displayed
in the left panel of Fig. 6 are indeed mostly independent of &,
as long as 6>0. It might potentially be interesting to study
even lower 6, although probably unrealistic from the socio-
logical point of view [33].

We conclude that the effect of interaction noise is to re-
duce relaxation times, but that it does not alter the phase
behavior of the model, with an ordered phase at low r and a
disordered one at large r. As in the absence of interaction
noise (6=0) this transition is present only in finite systems,
seen in the inset of the left panel of Fig. 6 and in the right
panel. As the system size is increased at equilibrium the
order-disorder crossover moves to smaller values of the noise
strength r and can be expected to be absent in the thermody-
namic limit, where only the disordered region prevails. In-
deed rescaling of the data in the inset of the left panel dem-
onstrates that 7N In N is the relevant scaling variable, similar
to the observations of [11]. At finite running times ¢ the order
at low r is gradually reduced with increased system size and
in the thermodynamic limit the system is qualitatively well
described by the master equation.

Figure 7 finally confirms that this behavior is not limited
to the standard Axelrod dynamics with vanishing interaction
threshold (9=0). Interaction noise reduces the time scale on
which the system orders at small » also in the model with
moderate nonzero thresholds and that the system at 9>0
behaves very much like the one at 9=0.

V. EUCLIDEAN AXELROD DYNAMICS

We now turn to a modification of the Axelrod dynamics in
which a metric allowing for gradual notions of agreement
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FIG. 7. (Color online) Effects of interaction noise. S/N versus time ¢ at different levels of external and interaction noise. Data are from
simulations of systems with N=10X 10 agents. The left part shows 9=0 (averages over 50 samples) and the right one shows 9¥=2 (10 runs
and data smoothened by running averages). F=10,¢=100 in both panels. At large r no order is reached, independent of &. For small enough
r the system orders; the time scale on which this occurs is largely reduced by the introduction of interaction noise and increases as the
interaction threshold is raised (note the different scaling on the time axes on left and right).

between agents is introduced. As before, opinions take dis-
crete values o e{l,...,q}. However, the “distance” be-
tween two spins ¢; and ¢ is no longer measured in terms of
the number of features on which the corresponding agents
agree, but instead based on the following Euclidean distance
between the spin vectors ¢; and o;:

F
1
St o

Thus the distance between two agents ranges between 0 and
1. It takes the maximal value d=1 if and only if the opinions
of the two agents are diametrically opposed, i.e., of for any
feature f one has o;=1 and o;=qg or o,=q and o;=1.
Distances different from 0 or 1 thus indicate partial agree-
ment between the two agents.

In the following we will take the potential of two neigh-
boring agents to interact to be given by the following logit
rule [34]:

1
p(d) = T2 Py (4)

B is a control parameter allowing for the introduction of
interaction noise. The case B=% here corresponds to the
noise-free (zero-temperature) case. If B=o0, agents with dis-
tance d>d,, are unable to interact, p(d>d;)=0, whereas in-
teraction always occurs for pairs of agents with distance d
<d,. d, is thus a threshold parameter, with large d, corre-
sponding to a regime of strong confidence of agents in other
people’s opinions and small d, to cases in which interaction
is rare. In order to avoid confusion let us at this point stress
that the role of the threshold d,, is inverse to the one of ¥ in
the nominal Axelrod model: large ¥ makes interaction rare,
whereas large d, facilitates spin updates.

Choosing finite values of 3 turns the hard threshold into a
soft one. Interaction rates decrease smoothly with increasing
distance. Crucially, at finite 3, interaction is always possible,
in principle, even if d>d,. For S=0 finally, interaction is
fully stochastic and independent of d. At any iteration, any

chosen pair of neighboring agents interacts with probability
of 1/2.

Let us summarize the resulting dynamics as follows:

(i) Select one spin i €{l1,...,N} at random. Subsequently
select one of its four nearest neighbors at random. Call this
second spin j.

(ii) Compute the Euclidean distance d(i,j) between i and

(iii) If d(i, j) =0 both agents agree on all features. Interac-
tion has no effect. If d=d(i, ) >0 then with probability p(d)
as defined above spins i and j interact as in the nominal
Axelrod model: one feature f is chosen at random, so that
O-lf;t (T]f Then set a-l'f: a-jf

(iv) External noise. With probability r perform the follow-
ing: choose one spin 7 and one feature f at random. Set oy to
a value chosen randomly from {1, ...,q}.

(v) Resume at (i).

A. Noise-free dynamics

The behavior of the noise-free system with Euclidean
metric is described in Fig. 8. A transition between a disor-

| tapepas
0.8- .
0.6 .
P, |
0.4 | ]
L eoF=5q=10
= aF=5, g=100
0.2 ++F=40, q=10 |
, +aF=40, g=100|
- e Il n Il n
O***""04 06 08

FIG. 8. (Color online) P versus interaction threshold d,, for the
Euclidean model. Data are from simulations at different values of F
and ¢ (N=20X 20 and averaged over ten samples). Simulations are
run until each bond has distance d=0 or d>d,, i.e., until no active
bonds are left in the system.
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dered phase at low thresholds d, and an ordered state at
larger values of d is observed. The behavior in these two
phases is as follows: at low d,, only neighboring agents with
small differences in opinion can interact, so that the fraction
of active bonds initially contained in the system is small.
Dynamic arrest occurs quickly and the system remains dis-
ordered. At large enough thresholds d,, the coarsening dy-
namics can persist until a fully ordered state is reached. In-
terestingly, as shown in Fig. 8, the critical value of the
threshold d,,. does not depend much on the choice of F and ¢
and takes values dj.=0.4. The transition appears to become
sharper at larger values of F (see Fig. 8).

Plotting Py versus ¢ at fixed F suggests that g plays no
significant role in the Euclidean model. Only for small val-
ues of ¢ can a dependence of Pr on g be detected. This
invariance is intuitively to be expected as d is normalized to
range between 0 and 1 in the setup chosen here, so that g is
merely a measure for how many discrete values can occur in
between. Simulations with continuous opinions ranging in
the interval [0,1] (not shown here) reveal a behavior very
similar to the one depicted in Fig. 8. We have also tested
models with continuous opinions, in which both interacting
agents agree on the average opinion of a given feature in
case of interaction (with the same metric and kinetic con-
straints as before), and find similar behavior as a function of
d. Similar models are discussed in [20,21], mostly focusing
on the case of one feature.

B. Effects of external and interaction noise

The behavior of the Euclidean system under the influence
of external and interaction noise is shown in Fig. 9. As seen
in the main panel, a crossover between an ordered regime at
low magnitudes r of the external noise and a disordered state
at higher noise amplitudes is found, very much similar to the
nominal Axelrod model. Interaction noise (finite B8) appears
to have only little effect on this crossover for all values
tested. Due to long equilibration times we have not per-
formed a full analysis of the impact of external noise (r
>0) in the large-N limit of the model zero temperature (8
=), The inset of Fig. 9 however demonstrates that at finite
B the range of r in which the system orders is reduced as the
system size is increased, similar to what is found in the
nominal Axelrod model. The ordering behavior at small val-
ues of the external noise strength hence again appears to be
present only in finite systems.

VI. SUMMARY AND CONCLUSIONS

We have extended Axelrod model for social influence to
include varying interaction threshold, noise, and metric fea-
tures. In the basic model, which is two-dimensional, indi-
viduals are represented as multicomponent spins and interact
to become culturally closer, starting from a disordered ran-
dom initial state. In our extension external and interaction
noises are introduced, a confidence threshold limits the inter-
action, and a notion of distance between opinions is consid-
ered. We find that the confidence threshold does not influ-
ence the qualitative behavior of the model much and that the

PHYSICAL REVIEW E 79, 046108 (2009)

f;;‘?,‘—:“\ T T TTTTT T T TTTIT
I o0 | |
£ B=0.1
0.8 oropsl ]
A-A B=10
0.6 — ]
F 14
04—~ T 1
0.8 ]
0.6 — ]
02940 n
0.2+ ]
o
0 10°
10° 10" 10” 10’
r

FIG. 9. (Color online) Effects of noise on the Euclidean model.
Main panel shows Pg versus r from simulations of a system of size
N=20X 20, run for 200 000 macroscopic steps, and averages over
ten samples (F=10,¢=100). The interaction threshold is dy,=0.3,
i.e., the system is in a mostly disordered phase if f=% (Pr=0.2).
Inset: P versus r at fixed B=1 for system sizes N=407, 20%, and
10? from left to right (same simulation parameters as in main panel
and five samples only for N=40?).

typical transition, separating an ordered and a disordered
equilibrium state, is preserved and determined basically by
the initial probability of interaction between two individuals.
The threshold limits the probability of interaction and hence
favors disorder. The introduction of an external noise brings
in finite systems a continuous transition between an order-
favoring and a disorder-favoring role of the noise, according
to whether the noise is small or large, respectively, indepen-
dent of the threshold. This implies a discontinuity, in the
region where the final state would be disordered in the ab-
sence of external noise. Such a discontinuity is removed in
the thermodynamic limit as we have verified in models with
interaction noise. The latter type of noise favors order by
reducing relaxation times and does not alter the phase struc-
ture of the model. The other variant we study is the one with
a notion of distance between opinions. We find that the
model exhibits an order-disorder transition as the distance
threshold is varied, consistent with the idea that the transition
is the result of the competition between an ordering dynam-
ics (the relative importance of which is determined by the
distance threshold) and an initial disorder (as measured by
size of the space from which the starting configuration is
drawn at random).

Although we do not report the results here, the introduc-
tion of heterogeneous confidence thresholds in the context of
metric Axelrod systems allows one to study e.g., the question
of whether extremism can prevail in such models. We found
that the presence of a small fraction of individuals with a
sufficiently rooted opinion can drive the whole population to
the extreme ends of the opinion spectrum. Further applica-
tions of heterogeneous interaction thresholds and metric fea-
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tures might include extensions addressing immigration or
geographic barriers. Immigrants can, for example, be as-
sumed to be more likely to interact with other immigrants
than with members of the original population, and geo-
graphical barriers can be modeled by suppressing interaction
at certain locations in space. This would lead to different
interaction thresholds and tolerance levels, modulated either
in space or dependent on the two agents picked for potential
interaction.
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